Boffa Miskell

NZWEA Wind Energy Conference Session 2 - Empowering New Wind

Avifauna and Wind A retrospective and a look into the future

Stephen Fuller, Boffa Miskell 24 August 2022

"Best practice in ecological assessment for wind farms"

- 2004 presentation to NZWEA on best practice for impact assessment and commented;
 - All guidance was international (relevant?),
 - Data on many NZ species very poor,
 - No data to risk profile any species,
 - Were starting from scratch.
- Since then nearly 20 years of research.
- First formal baseline avifauna study 2005.
- First post-construction monitoring started 2009.

Bird Groups of concern 2002

Mergini (seaducks)

Gaviidae, (divers, loons)

Alcidae (alcids, auks, puffins)

Otididae (bustards)

Tetraonidae (black grouse)

Sternidae (terns)

Sulidae (gannets & boobies)

Ciconiiformes (herons & storks)

Podicipedidae (grebe, dabchicks)

Accipitridae (raptors)

Charadriiformes (waders & gulls)

Anatidae (swans & geese)

Gruiformes, (cranes & rails)

Phalacrocoracidae (shags)

offa Miskel

What bird groups were of concern?

- In 2002 we began with this Northern Hemisphere List of birds of concern.
- Didn't know how relevant it was.
- Assessments relied on local knowledge and predictions based on behaviours.
- Removing groups absent from Southern Hemisphere and adding groups endemic to NZ we got . . .

Bird Groups of concern 2002

Mergini (seaducks)

Gaviidae, (divers, loons)

Alcidae (alcids, auks, puffins)

Otididae (bustards)

Tetraonidae (black grouse)

Sternidae (terns)

Sulidae (gannets)

Ciconiiformes (herons)

Podicipedidae (grebe, dabchicks)

Accipitridae (raptors)

Charadriiformes (waders & gulls)

Anatidae (swans & geese)

Gruiformes, (cranes & rails)

Phalacrocoracidae (shags)

NZ endemic Psittaciformes (parrots)

NZ endemic forest passerines (general)

NZ endemic seabirds (general)

NZ birds at risk (onshore)

- To date no mortalities from terns, gannets, herons, grebes or dabchick, cranes, rails, shag, & parrot groups,
- Raptor group swamp harrier,
- Waders & gulls group southern black-backed gull & spur winged plover,
- Swan, geese & ducks group paradise shelduck,
- 2 forest species in low numbers waxeye & tui,
- 2 individual seabird mortalities both prions.

Summary of post construction monitoring

- Combined available data from 5 wind farms
- Mortalities of 26 spp. 18 introduced, 8 native.
- Most frequent were swamp harrier (23%), finch spp. (18%), skylark (17%), magpie (14%), and mallard duck (8%).
- 7 native species with few mortalities.
- And 29 native species without observed mortalities.

Have learnt – presence does not equal risk

Site 1:

- Baseline = 40 spp., 22 native
- Mortalities = 9 spp., 2 native

Site 2:

- Baseline = 36 spp., 17 native
- Mortalities = 18 spp., 6 native

Site 3:

- Baseline = 30 spp., 15 native
- Mortalities = 8 spp., 3 native

Have also learnt – each site is unique - Site 1

	Abundance	Mortality
Black-backed gull*	32%	
Starling	16%	
Spur-winged plover*	15%	
Finch spp.	12%	<mark>17%</mark>
Skylark	3%	<mark>28%</mark>
Mallard	3%	8%
Australasian magpie	2%	3%
Swamp harrier*	1%	<mark>36%</mark>
House sparrow	< 1%	3%
Broad-billed prion*	0%	< 1%

Site 2

	Abundance	Mortality
Starling	37%	
Finch spp.	29%	<mark>33%</mark>
Waxeye*	7%	
Skylark	4%	4%
Black-backed gull*	3%	8%
Swamp harrier*	1%	<mark>23%</mark>
Paradise shelduck*	1%	9%
Mallard	1%	8%
Fairy prion*	0%	< 1%

Site 3

Abundance	Mortality
29%	
12%	<mark>29%</mark>
11%	
9%	<mark>35%</mark>
4%	<mark>19%</mark>
4%	
4%	
3%	
3%	
2%	
< 1%	3%
	29% 12% 11% 9% 4% 4% 4% 3% 3% 3% 3% 2%

Why do they differ so much?

Identified many factors affecting risk profile of site. All need to be considered in combination:

- Topography & habitat distribution,
- Size, number and type of turbines used,
- Spatial arrangement of turbines,
- Wind farm proximity to defined flight paths,
- The particular species of bird present at the site,
- Their breeding, feeding, and roosting behaviour,
- Their preferred flight height & avoidance rates.

Flight height & avoidance

- Now have good data on flight height from many species.
 - Some rarely seen within RSA, e.g. NZ Pipit, Banded dotterel,
 - Some mostly seen within RSA, e.g. Swamp Harrier, Black-backed gull,
 - And everything between.
- Avoidance is significant for all species! 100% for most, and likely 98% to 99.9% for the remainder.
- Avoidance rates not yet confirmed by research.

Mortalities per turbine

- Modelled results to date range from 1 to 11 mortalities per turbine per year depending on many factors.
- In all cases the % of natives has been very low, though total numbers of natives is skewed by swamp harrier, the most affected bird in NZ.

Have explored various tools

- Radar for migrants.
- GPS transmitters for raptors.
- Bio-acoustics & night vision for nocturnal activity.
- Collision risk modelling & population modelling.
- Understand strengths and weaknesses.

Have explored methods to minimise risk?

- Site Selection.
- Removal of one or several turbines.
- Limits to turbine layout, for example establishing noturbine flyways, habitat buffers.
- Removal of habitat:- deliberate displacement of birds.
- Risk modelling to test different layouts
- Curtailment has been discussed but not used, no data on effectiveness for any NZ species.

In summary for onshore wind

- Each site unique in terms of species presence and relative abundance.
- Each species has a unique risk profile that can vary site to site.
- To date mortalities of natives very low.
- In terms of rarity, 2 mortalities of relict species, no recorded mortalities of threatened species.
- Some design interventions have been effective.
- Have added considerably to knowledge of onshore birds in NZ.

Caveats

- Only access to data from 5 wind farms out of 21 commissioned – a very small sample size.
- These sites occur in a range of environments so results from one cannot be assumed for another.
- Are still environments where species are present that have not yet been studied post construction.
- Sampling bias means some mortalities not recorded, so not all affected species known.
- Post construction monitoring needs to continue to increase our knowledge and confidence.

Looking forward to offshore wind

- Many very large sites being prospected, likely to be seeking consent in the next 2 to 5 years.
- Current focus on the quantum of energy generation, not so much the ecological effects.
- Yet uniqueness of NZ coastal and seabird fauna will be a significant issue for offshore wind.
- Also of concern, are very few NZ seabird experts. How to resource the looming demand.

At-Risk	Threatened
3	3
28	14
6	2
14	12
	3 28 6

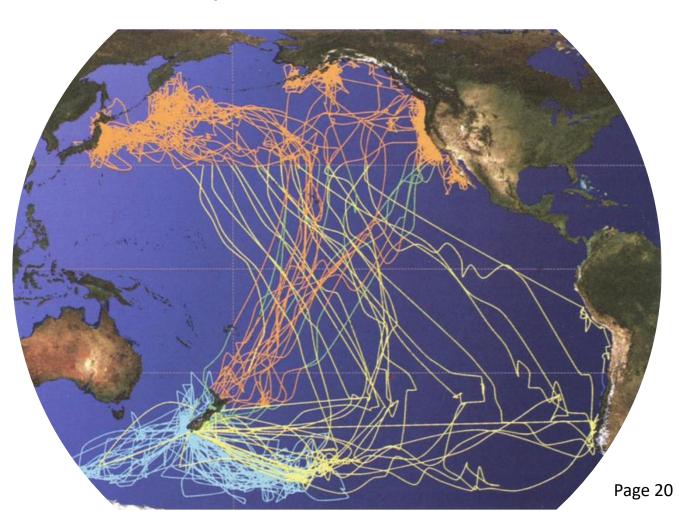
Boffa Miskell

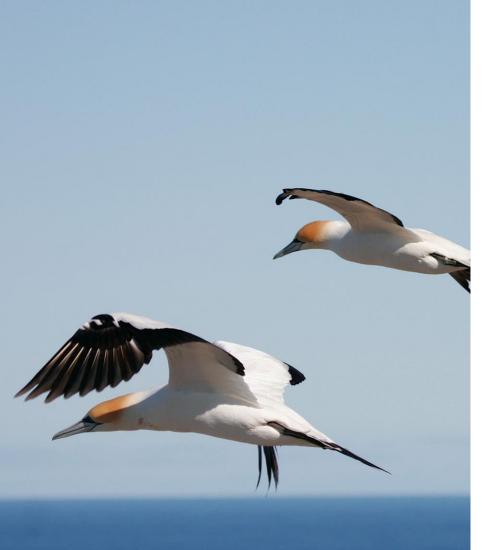
NZ has a unique and highly endemic seabird fauna

- 86 species of seabirds breed in NZ.
- More than 1/3 are endemic.
- 82 are "At Risk" or "Nationally Threatened".
- Many only or mostly found in southern oceans.
- Huge variation in abundances, hundreds for the most threatened, to millions for the most abundant.

Boffa Miskell

Biologically and physically diverse


Challenge for method development for survey and effects assessment. e.g.


- Antipodean albatrosses (nationally critical) 8.5kg,
- NZ storm petrel (nationally vulnerable) 35g.

Incredibly mobile

Boffa Miskell

Climate change

- Climate change is already having a significant impact on seabirds critically reliant on ocean temperatures for food availability
- Recent revision to Conservation status of NZ birds has identified impacts of climate change on a number of seabird species and increased threat status accordingly.

Bird Groups of concern 2002 (BWEA)

Mergini (seaducks)

Gaviidae, (divers, loons)

Alcidae (alcids, auks, puffins)

Otididae (bustards)

Tetraonidae (black grouse)

Sternidae (terns)

Sulidae (gannets)

Ciconiiformes (herons)

Charadriiformes (waders & gulls)

Phalacrocoracidae (shags)

Diomedeidae (albatross & mollymawk)

Procelleridae (fulmars petrels, shearwaters, prions)

Spheniscidae (penguins)

NZ seabirds of concern (coastal and offshore)

- The risk to southern ocean endemics is unknown but could be significant.
- Cannot rely on northern hemisphere studies
- Looking at results for terrestrial wind, we can assume there will also be differential risk between oceanic species, and risk will be different at each location
- Also of concern little we can do to influence factors causing decline, so offsetting may not be available for many of these species.

In summary for offshore wind

- Risks to seabirds currently undefined, international research not relevant for key spp.
- Available data on NZ seabirds not collected for the purpose of risk assessment.
- Land based data irrelevant and land-based methods unlikely to be useful offshore. Need new methods, requiring investment and trialing.
- Like onshore wind, years of research will be needed before we have confidence in predictions of risk for each key species.

Boffa Miskell

Continued . . .

- Despite overall uncertainty, are confident that:
 - effects on some seabirds are unlikely to be avoidable, and
 - effects on some or even most seabirds will not be offsetable.
- Therefore, for offshore wind to progress, some level of impact will have to be accepted.
- A different approach to effects assessment and management may be needed.

Other thoughts

- The data we have exists because we've built and observed real wind farms.
- However, increasingly national and regional policies require us to 'avoid' some effects.
- 'Avoid' requires certainty that no effects will occur before consent can be granted. In many cases this will be scientifically impossible.
- A precautionary approach is to decline
- If we can't build windfarms we can't increase our knowledge of risk, or improve tools to minimise.

Other thoughts

- Increasingly complex research needed, but current permissions process limits options.
- Greater collaboration with DOC, in some form, may be essential for future projects to progress.
- Publicly funded data should be open source.
- Equally the industry should share data with DOC.
- NZWEA could operate as a clearing house.
- NZWEA could also consider developing guidance for offshore wind.

In conclusion

- To date, onshore sites have proven to be relatively benign.
- But still some gaps in our knowledge of collision risk for some terrestrial bird groups.
- We are starting from scratch for offshore.
- We need new tools to monitor and test risk.
- We need data and lots of it
- We need to resolve the resourcing issue

In conclusion

- We need greater collaboration with DOC
- We need to agree on an approach to addressing adverse effects on threatened and at risk seabird species which cannot be avoided or mitigated.
- If done well, we have the opportunity to expand greatly our knowledge of our seabird fauna

Thank you

Boffa Miskell