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Introduction – The Early Years 

• From the mid-1970s,experimental development of vertical 

axis wind turbines (VAWTs) was underpinned by an 

incremental improvements of aerodynamic performance 

prediction methods  
 

• The double actuator disk, multiple streamtube 

theory(DMST)with corrections for streamtube expansion, 

dynamic stall, blade tip effects and flow curvature was the 

state-of-the-art and was easier to implement than the 

computationally more demanding vortex methods 
 



Introduction – More Recently 

 

• Commercially, VAWTs have not been as successful as the 

three-bladed, pitch controlled horizontal axis turbine 

became the standard for the industry and progress in VAWT 

development stagnated  
 

• However, a renewed interest in VAWTs has emerged, prompted 

by the development of small turbines for use in urban 

environments and perceived advantages for large offshore 

turbines 



Objective 

The objective today is to: 

 

• Present trade studies of VAWTs using the double actuator 

disk, multiple streamtube theory 

 

• Look at some recent third party findings 

 

• Present some initial VAWT investigations using a 

proprietary CFD software tool that uses a mesh-less 

approach to fluid dynamics modelling 



VAWTS 



Observations 

• Renewed interest in VAWTs for urban and offshore 

applications 

 

• New generations of VAWT favour the helical configuration 

 

• Helical VAWTs are being designed with large height/diameter 

ratios 

 

 



WHY HELICAL VAWTS? 



What does VAWT theory tell us ? 
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Flow Field Through Turbine k = 0.358 

after Sharpe & Read (1982) 

𝛝° 𝛃° 𝑽𝒖
𝑽∞
  𝛃° 𝑽𝒅

𝑽∞
  

0 180.0 0.821 0.0 0.463 

10 172.8 0.824 12.8 0.471 

20 165.4 0.832 25.4 0.495 

30 157.8 0.845 37.8 0.535 

40 149.9 0.863 49.9 0.589 

50 141.6 0.885 61.6 0.655 

60 132.9 0.911 72.9 0.732 

70 123.8 0.939 83.8 0.816 

80 114.3 0.969 94.3 0.907 

90 104.4 1.000 104.4 1.000 
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How do the different VAWTs compare ? 



GEOMETRY VARIATIONS 



VAWT Geometry Variations 

• The derivations presented so far assume an H-type VAWT with 

straight blades that are parallel to the axis of rotation 

 

• The Φ-type (Troposkien Darrieus) and V-type VAWTs have 

blades with segments that are inclined to the vertical axis  

 

• The helical (Gorlov) VAWT have blades that are inclined to 

the horizontal plane 

 

• These geometry variations increase the effective area of 

the blade in the streamtube but modify the relative wind 

vectors and orientation of the aerofoil forces 



Trade Studies of VAWT Variations 

• The following studies are based upon the rotor geometry of 

a typical helical VAWT with 𝑵 =  𝟑 and 𝝈 = 𝟎. 𝟑 operating in a 
constant windspeed of 𝑽∞ = 𝟏𝟐 𝒎/𝒔 

 
𝑽∞ = 𝟏𝟐 𝒎/𝒔 helical H-type V-type Φ-type  

Height (mm) 5300 5300 1500 3820 

Diameter (mm) 3000 3000 3000 3000 

Swept Area (m2) 15.9 15.9 2.24 8.0 

Chord (mm) 200 200 200 200 

Blade Span (mm) 6161 5300 1980 5017 

Angle 𝝍° 30.7° - - - 

Angle 𝝓° - - 45° 0° - 57° 

Airfoil Section NACA 0018 

𝐜𝐨𝐬𝟐𝝍 = 𝟎. 𝟕𝟒   
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Observations 

• The numerical results reflect the general observations made 

about how VAWT geometry influences aerodynamic performance 

 

• The advantage of the helical VAWT is its favourable cyclic 

loading characteristic, which is offset by a small 

reduction in performance efficiency 

 

 



AERODYNAMIC PREDICTIONS 



Limitations of Streamtube Theory 

Whilst the multiple streamtube theory is useful for VAWT trade 

studies, it is limited by: 

 

• Quality of available aerofoil data 

 

• Models of Dynamic Stall 

 

• Local blade geometry effects 

 

• Theory breaking down with high solidity rotors (blockage) 

 

 

 



Does CFD offer any substantial new insights 

into turbine behaviour ? 



Numerical Simulation of Dynamic Stall 

Paraschivoiu, I., Saeed, F. & Desobry, V. (2002) 



2D CFD Simulation of Dynamic Stall 

Ferreira, C.S. (2009) 



3D CFD Tip Effects – Iso-Vorticity Surfaces 

Ferreira, C.S. (2009) 



2D CFD Velocity Field 

Deglaire, P. (2010) 



Turbulent KE and Relative Velocity 

Lanzafame, R., Mauro, S. & Messina, M. (2013) 



Flow Velocity & Vortex Shedding 

Marsh, P., Ranmuthugala, D., Penesis, I. & Thomas, G.(2013) 



VAWT Wakes 

Scheurich, F., Fletcher, T.M., & Brown, R.E.(2011) 



Meshless CFD Simulations - XFlow 



Observations 

• CFD offers substantial new insights into VAWT behaviour 

that are well beyond the capabilities of the multiple 

streamtube theory … but multiple streamtube theory remains 

a valuable tool for design configuration 

 

• However, we sadly lack the data to validate numerical 

results from either approach 



CONCLUDING REMARKS 



Conclusions 

• The Vertical Axis Wind Turbine is an under utilised wind 

energy technology  

 

• The Helical VAWT should dispel concerns over long-term 

fatigue due to cyclic loading of the structure  

 

• CFD tools are attractive options for dynamic/transient 

flows, moving bodies and complex body surfaces but the 

simplicity of the multiple streamtube theory makes it 

useful as a conceptual design tool  

 

• The challenges remain much the same with a lack of field 

and experimental data for validation coupled with a 20+ 

year lag in commercial development 
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