science for a changing world

Estimating direct fatality impacts at wind farms: How far we've come, where we have yet to go

NZWEA Conference

 April 15, 2014Manuela Huso
Forest \& Rangeland Ecosystem Science Center Corvallis, Oregon Western USA

Estimating fatality is Iike a parlor game

2 20 USG

Estimating fatality is Iike a parlor game

2aSGS

Estimating fatality is like a parlor game

ZUSGS

Probability of 7 Heads with fair coin

$N \geq 7$
Most likely number of flips: 13 OR 14
$\hat{N}=13$ or 14

Probability of 7 Heads with fair coin

Analogy

- Number of flips = number of dead animals
- $\operatorname{Pr}($ Heads $)=\operatorname{Pr}($ detection $)$

2USGS

ZUSGS

2aSGS

Major sources of imperfect detection

- $\boldsymbol{f}=$ fraction of turbines sampled
- r = probability of persisting ($\sim \mathrm{CP}$)
- p = probability of observing a carcass (SE)
- $a=$ fraction of carcasses in searched area

$$
\hat{F}=\sum_{i=1}^{k} \frac{c_{i}}{f \hat{r}_{i} \hat{p}_{i} \hat{\theta}_{i}}=\sum_{i=1}^{k} \frac{c_{i}}{\hat{g}_{i}}
$$

- Pre-Altamont
- Observed fatality but no adjustments made for imperfect detection
- Rogers et al. 1977, 1980; McCrary et al. 1983, 1984, 1986; Estep 1989; Howell et al. 1991

DUSGS

Persistence prob

$$
\hat{F}=\sum_{i=1}^{k} \frac{c_{i}}{f\left(\hat{r}_{i} \hat{p}_{i} \hat{a}_{i}\right.}=\sum_{i=1}^{k} \frac{c_{i}}{\hat{g}_{i}}
$$

- Altamont
- CP trials to adjust observed counts
- Simple proportion persisting $7 \mathrm{~d}=$ search interval
- Assumes all carcasses found died 7 days ago
- Not flexible to changing search interval

Persistence prob

$$
\hat{F}=\sum_{i=1}^{k} \frac{c_{i}}{f \hat{r}_{i} \hat{p}_{i} \hat{a}_{i}}=\sum_{i=1}^{k} \frac{c_{i}}{\hat{g}_{i}}
$$

- Recent variations:
- Proportion persisting $1 / 2$ * I days
- not flexible to changing interval
- Model persistence time with best-fit distribution
- exponential, Weibull, loglogistic, lognormal,...
- calculate r for any period (Huso, 2010; Bispo 2011)
- Model persistence time with Weibull (Wolpert \& Warren-Hicks 2012)

Carcass persistence: Exponential

- Average persistence time = 7 days scale = 1/7

How long before $1 / 2$ are gone?
What \% remain after 7 days?

Carcass persistence: Weibull (1)

- Average persistence time = 7 days scale $=1 / 7.63$, shape $=5$

Carcass persistence: Weibull (2)

- Average persistence time = 7 days scale $=1 / 3.5$, shape $=0.5$

How long before $1 / 2$ are gone?
What \% remain after 7 days?

Carcass persistence

- Average persistence time = 7 days
- Prop ${ }^{\text {tn }}$ persisting VERY DIFFERENT

Knowing average is not enough...
need distribution

DUSGS

Searcher Efficiency

$$
\hat{F}=\sum_{i=1}^{k} \frac{c_{i}}{f \hat{r}_{1}\left(\hat{p}, \hat{a}_{i}\right.}=\sum_{i=1}^{k} \frac{c_{i}}{\hat{g}_{i}}
$$

- SE = \# found / \#placed

Assumptions:

- SE constant and independent (Schoenfeld 2004) overestimate SE $>$ underestimate F
- SE not constant nor independent (Huso 2010) underestimate SE $>$ overestimate F
- SE not constant but independent (wolpert \& Warren-Hicks 2012) just right...

ZUSGS

Area

searched

Carcass density not constant

 Ratio R\&P/TotalModel density ~ dist

50

Variance

$$
\operatorname{Var}(\hat{F})=\operatorname{Var}\left(\sum_{i=1}^{k} \frac{c_{i}}{f \hat{r}_{i} \hat{p}_{i} \hat{a}_{i}}\right)=? ?
$$

- What about confidence interval?

Altamont
182 birds, 119 raptors over 6 spr/fall
1989: Large Raptors
Small Raptors
227 ± 416
1990: Large Raptors Small Raptors 0 ± 112 82 ± 451
No information on how variance was caleculated

Variance

$$
\operatorname{Var}(\hat{F})=\operatorname{Var}\left(\sum_{i=1}^{k} \frac{c_{i}}{f \hat{r}_{i} \hat{p}_{i} \hat{a}_{i}}\right)=? ?
$$

- Difficult

- Recent variations:
- Bootstrap (Erickson et al.; Huso et al.)
- Closed-form (Wolpert \& Warren-Hicks 2012)
- Other closed-form solutions K !gative limits
- No estimate yehad itadacke of uncertainty
- Use common senşe
- Model saysai it ingack! been killed

2USGS

Next Steps: Analysis

- Reanalysis of existing data for cumulative impacts, regional patterns (Sonnenberg et al.)
- Critical evaluation of assumptions
- Surrogate species?
- Nearby sites' SE \& CP? Previous years' SE \& CP?
- Predictive models of activity and/or fatality
- Confidence Interval \ddagger Prediction Interval

Next Steps: Estimators

- Improve current H-T estimators to reflect more realistic assumptions
- Wolpert \& Warren-Hicks
- Bispo et al.
- Erickson et al.
- Hull \& Muir; Huso \& Dalthorp

SE
r (~ CP)
SE and r combined a

Sonnenberg et al.; Ong et al.; Kosciuch et al.

- New (not H-T) estimators for rare events,
- e.g. GOEA, lbat, ...
- (Peron \& Nichols; Huso \& Dail; Dalthorp \& Huso)

20USGS

Next Steps: Protocol

- Monitoring design tools
- What fraction of turbines? What search interval?
- Trial sample size needs
- Increase efficiency, reduce cost
- Search high probability/high density areas, extrapolate to rest
- Sonnenberg et al.; Huso \& Dalthorp; Roppe et al.
- Develop completely different approach
- Impact sensors
- Cameras

Delprat et al.; Suryan et al.
Cryan \& Gorreson; Bart et al.

2

THANK YOU!

2 2 USES

