IRRIGATION NZ

"Promote Excellence in Irrigation"

- Advocacy & Leadership
- Education & Training
- Research & Innovation

Membership

Schemes, User Groups & Individual Irrigators – 60% of NZ's irrigated area (720,000ha)

Technical & Trade – Over 150 service industries (& government)

WHY WE IRRIGATE

WHERE WE IRRIGATE

PED Anomaly: Jul 2012-Mar 2013 35S 40S 45S 170E 172.5E 175E 167.5E 177.5E -50 -25 25 50 75 100 125 0

CLIMATE CHANGE & DROUGHT

Drought Change 1980-1999 to 2030-2049

"Long, dry spells are forecast to double by 2040 as temperatures continue to rise and New Zealand heads towards a more Mediterranean climate". NIWA 2013

PROFITABILITY = RESILIENCE

IRRIG

Essential versus Risk Management

THE SOCIO-ECONOMIC OPPORTUNITY

- Current 720,000ha 19% farmgate GDP
 2% national GDP
- Productivity
 Irrigated : Dry land 3 : 1
- Flow-on
 - o \$1 Private = \$3 \$6 Public
- Increase by 350,000ha = 1million
 GDP +0.8%
 - Exports +\$4billion
 - Consumption +\$2 billion

NZ IRRIGATION

Existing = 720,000ha Canterbury – 65% Otago - 18% Hawke's Bay Marlborough Tasman Wairarapa **Bay of Plenty** Northland Pukekohe Gisborne Manawatu

IRRIGATION ENERGY USE – TOTAL NZ

- Sector and system specific estimates
- Barber (2005) 2002-03 irrigated area
- 165,800 MWh/pa arable & vegetable
- 305,500 MWh/pa dairy industry
- Bloomer (2008)
- 225,700 MWh/pa centre pivot & linear move irrigators

IRRIGATION ENERGY USE – INZ ESTIMATE

700,000ha = 1.3million MWh/pa = 3% generation

RRIGA

- Dairy, Dairy support, sheep & beef
 (2.0 MWh/ha/pa, 450,000ha) = 900,000 MWh
- Arable & vegetable
 (1.7 MWh/ha/pa, 200,000ha) = 340,000 MWh
- Wine

(1.4 MWh/ha/pa, 25,000ha) = 35,000 MWh

- Orchards

 (1.0MWh/ha/pa, 25,000ha) = 25,000 MWh
- 1millionha = +690,000 MWh/pa

10% summer generation

TYPICAL IRRIGATION ENERGY USE

Capacity requirements kw/ha &

- 0.4 0.5 for 0-10m lift
- 4.0 for 80m
- Energy use kwh/m³
- 0.15 for surface pumps
- 0.75+ for bores or lifts of 80 m

Considerable variation - efficiency of setup and system type

Cost per m³ (much variance based on pricing plan)

- \$0.05 0.10 for surface water
- \$0.15 0.24+ for bores depending on lift

SYSTEM DIFFERENCES

AREA	FLOW RATE	AREA SERVED	POWER	kW/Ha
	(l/s)	(ha)	DRAW	
			(kW)	
Pivot 1	70	110.5	45	0.41
Pivot 2	60.8	99.5	45	0.45
West Sprinklers	12	36	18.5	0.51
Ocmis Gun	15	30	60	2.00
East/Gallery	N/A	30	22	0.73
Sprinklers				

IS THERE AN OPPORTUNITY FOR WIND?

- Irrigation needs a reliable energy supply 'as and when' crucial
- Peak demand January -'A stunning summers day'
- Can wind provide this?

WIND – DOES IT STACK UP?

Direct water supply scenario

Income

- Summer offset pumping gain
- Winter sell back to grid?

Expenditure

- Turbine Installation cost
- Turbine upkeep cost
- Cost of back-up supply (line charges)
- Cost of capital

INZ keen to explore if viable?

WIND – DOES IT STACK UP?

Indirect water supply scenario

WIND – DOES IT STACK UP?

Low pressure irrigation systems in remote farming areas

- Water supply small constant take
- Topography dam site available
- Electricity no grid connection

INZ keen to explore if wind viable?

