DNV·GL

ENERGY

LiDAR – Application to resource assessment and turbine control

Dr. Avishek Kumar

The New Zealand Wind Energy Conference 13th April 2016

Agenda

- What is LiDAR?
- Remote Sensing in IEC 61400-12-1 Ed.2
- Remote Sensing beyond IEC 61400-12-1 Ed.2
- LiDAR Assisted Turbine Control

What is LiDAR?

Background: What is LIDAR?

- LIDAR (Light Detection and Ranging) systems probe the atmosphere with a pulsed or continuous stream of electromagnetic radiation at a known frequency/wavelength (different ways of probing)
- Laser radiation scatter from collisions with atmospheric aerosols (dust, pollen, particulates) at shifted frequencies.
- Return signal is analysed for its intensity and frequency to determine the wind speed - Doppler phenomenon

Background: What are the advantages of LIDARs?

- Reduce installation time and campaign duration
- More measurement points across an area
- No Permission for installation is required
- Measurement Location can chosen flexibly
- Invisible from the distance
- No noise
- Measurement heights up to 200m are possible and can be chosen freely
- No Icing
- Installation on nacelle possible
- Measures valid data in light to moderate precipitation events
- High data recovery

Background: What are the challenges with LIDARs?

- Costly (approximately \$200k perhaps less?)
- High power consumption (some units incorporate heating elements)
- Stable power supply required
- Sensitivity to ambient conditions (fog, cloud cover, precipitation)
- Maintenance intensive
- Fragile
- Not suitable for complex terrain (?)
- Not suitable for sites with high frequency of stable atmospheric conditions (?)
- Need some particulate in the atmosphere
- LIDARs measure over a volume rather than a point and therefore there are disparities between measurements done by a LIDAR and a cup anemometers.
- For this and other reasons (frequency of sample for example) there are substantial differences in what comes to:
 - Turbulence
 - Extreme wind speeds

Power curve assessment

Why Undertake Power Performance Measurements on Wind Turbines?

- Certification requirement
- Prediction of energy output
- Optimisation of turbine performance
- Warranty Measurements
- Basis for feed-in-tariff (e.g. in Germany)
- R&D

Wind Measurement for Power Performance Measurement on Wind Turbines – Status

 Current Status of the IEC Standard:

Following the IEC 61400-12-1, Edition One, 2005-12, wind speed and direction measurement is only valid with a reference met mast in a distance of 2D-4D to the to be measured turbine.

Wind Measurement for Power Performance Measurement on Wind Turbines – Status

 Near Future Status of the IEC Standard: The new version of the IEC 61400-12-1, Edition Two, will presumably allow the wind speed and direction measurement with ground base Lidar systems (in non-complex terrain).

Remote Sensing in IEC 61400-12-1 Ed.2

Wind speed measurement	нн	нн	REWS	REWS
Terrain type	Non-Complex	Complex	Non-Complex	Complex
Hub height meteorological mast	x	x		
Hub height meteorological mast + RSD	x	x	x	
RSD + non-hub height meteorological mast	x		x	
Meteorological Mast significantly above Hub Height	x	x	x	x

- Two wind speed definitions:
 - HH: Hub Height Wind Speed
 - REWS: Rotor Equivalent Wind Speed
- Four setups
- Note: "remote sensing" applies to ground-based measurements only

Remote Sensing in IEC 61400-12-1 Ed.2: Rotor-equivalent wind speed

Definition:

"The rotor-equivalent wind speed is the wind speed corresponding to the kinetic energy flux through the swept rotor area, when accounting for the vertical shear."

$$v_{eq} = \left(\sum_{i=1}^{n_h} v_i^3 \frac{A_i}{A}\right)^{1/3}$$

where

- n_h is the number of available measurement heights $(n_h \ge 3)$;
- *v_i* is the wind speed measured at height *i*;
- A is the complete area swept by the rotor (i.e. πR^2 with Radius R);
- A_i is the area of the *i*th segment, *i.e.* the segment the wind speed
- v_i is representative for, derived from Equation

- Only flat terrain
- Each RSD must be verified before each measurement a short mast is still required at each measurement point!
- RSD can be used to calculate the REWS, wind shear and wind veer but not the turbulence
- IEC has given a method to calculate uncertainty
- Ground based LiDAR only

Remote Sensing in IEC 61400-12-1 Ed.2: Non-compliant Measurements

- Aim to be pragmatic:
 - Restrictions on mast installation?
 - Follow procedure as closely as possible
 - Quantify uncertainty due to non-compliant methods
 - All parties must agree

Remote Sensing in IEC 61400-12-1 Ed.2: Non-compliant Measurements – Offshore

- Floating LIDAR?
- Currently Status:
- Floating Lidar System (FLS) technology has significant potential to drive down costs for Offshore Wind Measurement campaigns.
- Mounting proven Lidar technology on buoys creates challenges for
 - reliability,
 - maintainability and
 - power management;
 - and also introduces additional uncertainties in the data produced.

LiDAR Assisted Turbine Control

Where are we now?

Generation from wind is odd:

- No control over "fuel"
- No knowledge of "fuel" characteristics until after it is used

Lidar Assisted Control

Wind

Avent five-beam LIDAR

Conclusions

- LAC easily added to existing controllers
 - Relatively low levels of tuning for immediate performance increase
 - No impact on stability
- LAC achieved better speed regulation than feedback only
- Significant detuning before speed regulation suffered
- Detuning resulted in:
 - Reduced pitch activity
 - Reduced tower spectral response
- Tower spectral response likely to reduce much further with no harmonic/structural clash

Avishek Kumar avishek.kumar@dnvgl.com

www.dnvgl.com

SAFER, SMARTER, GREENER